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Abstract

The powered-lift Channel Wing concept has been combined with pneumatic Circulation
Control aerodynamic and propulsive technology to generate a Pneumatic Channel Wing
(PCW) configuration intended to have Super-STOL or VSTOL capability while eliminating
many of the operational problem areas of the original Channel Wing vehicle. Wind-tunnel
development and evaluations of a PCW powered model conducted at Georgia Tech
Research Institute (GTRI) have shown substantial lift capabilities for the blown configuration
(C_ values of 10 to 11). Variation in blowing of the channel was shown to be more efficient
than variation in propeller thrust in terms of lift generation. Also revealed was the ability to
operate unstalled at very high angles of attack of 40°-45°, or to achieve very high lift at much
lower angle of attack to increase visibility and controllability. In order to provide greater
flexibility in Super-STOL takeoffs and landings, the blown model also displayed the ability to
interchange thrust and drag by varying blowing without any moving parts. A preliminary
design study of this pneumatic vehicle based on the two technologies integrated into a
simple Pneumatic Channel Wing configuration showed very strong Super-STOL potential.
This paper presents these experimental results, discusses variations in the configuration
geometry under development, and addresses additional considerations to extend this
integrated technology to advanced design studies of PCW-type vehicles.

Introduction / Background

The ability to achieve Super-STOL or V/STOL capability with fixed-wing aircraft has been
an attractive goal in the aerospace community for over 50 years. The impetus toward its
achievement has historically been the numerous benefits associated with very-short to zero-
field-length operations of non-rotary-wing aircraft. While such capability has direct
application for military missions such as those of a tilt-rotor or tilt-wing aircraft, there also
exists an additional need for simple/reliable/effective personal and business-sized Super-
STOL or VSTOL aircraft operating from remote or small sites as well as increasingly dense
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urban environments. The development of simple, efficient aeropropulsive technology and
corresponding low-speed control systems to make this possible is a goal which now
seems practical due to technical breakthroughs in pneumatic and powered-lift aerodynamic
technologies. This paper, presented at the NASA/ONR CC Workshop in March 2004, will
discuss recent progress in the integration of high-lift, propulsive, and control systems, all
employing common pneumatic techniques using Circulation Control blowing, into a
promising Super-STOL configuration.

Figure 1— 3-View and in-flight photo of 1960s Custer Channel Wing Aircraft (Refs.1, 2 and 3)

Two promising technologies to evolve from earlier STOL/VSTOL research are the Custer
Channel Wing powered-lift configuration and the Circulation Control Wing (CCW) pneumatic
high-lift concept. Through innovative use of the propeller slipstream, the Channel Wing
airplane developed by Willard Custer (Figure 1 and Refs. 1, 2, 3) was able to achieve
significant lift coefficient and efficient downward thrust deflection without varying the high-lift
configuration geometry. This powered-lift technology, tunnel-tested by NACA in 1953, (Ref.
1) and then flight-tested and further developed by Custer in the mid 1960’s (Ref. 2),
employed the Channel Wing concept shown in the sketch of Figure 2 (from Ref. 3). In
essence, the propeller located at the very trailing edge of the 180°-arc circular channel in the
wing further increased the velocity over the channel’'s upper surface and augmented the
circulation and lift there in much the same manner as a deflected flap, but perhaps to a
greater extent. Lift was also augmented by the deflected slipstream behind the channel
such that

AC| = Ct sin (a + slipstream)
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Figure 2- Basis of the Channel Wing Concept and Current Pneumatic Improvements (Blue)

However, while in-flight lift coefficients nearing 5 were generated by thrust coefficients
also nearing 5 (Ref. 3), the flight-tested Custer Channel Wing aircraft demonstrated a
number of drawbacks associated with low-speed handling, cruise drag, stability & control,
high-incidence operation, and one-engine-out scenarios, including:

» much of the high C was from redirected thrust, less was from circulation lift
augmentation

* high cruise drag could result from the channel’s extra surface area

« asymmetric thrust yields asymmetric moments & instability

 channel leading-edge and trailing-edge separation could occur at high angle of attack, a

* poor low-speed control from conventional aerodynamic surfaces at low speeds

* nose-down pitch from aft propeller loading on the wing

 non-uniform flow around the prop at high a

* poor lift/drag ratio

* high-angle-of-attack operation could cause poor visibility and control

* one-engine-out control problems

To alleviate these shortcomings, preliminary research has been accomplished under a
NASA-Langley-sponsored program at Georgia Tech Research Institute (GTRI) which has
investigated adapting Circulation Control pneumatic technology (Figure 3 and Refs. 4 and 5,
for example) to dramatically improve the Channel Wing configuration. As Figure 2 shows,
the new pneumatic configuration (in blue) thus developed combines blowing on curved
surfaces at the channel trailing edge to greatly augment the lift and thrust deflection without
using high angle of attack. It also employs blown Circulation Control Wing technology on the
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Powered-Lift Concept (Ref. 6)

outboard wing panels to further augment lift and low-speed controllability while providing
additional drag when needed for slow-speed approaches down steep glide slopes for
Super-STOL.

This channel thrust turning and lift augmentation are based on the CCW/Upper

Surface Blowing (USB) concept of Figure 4, where tangential blowing on a highly curved
trailing edge behind a jet engine augments flow field entrainment, increases circulation and
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deflects thrust to add more incremental lift. Thrust deflection angles of 165° produced by
blowing were measured experimentally on wind-tunnel models (Refs. 5 and 6). This
concept provides pneumatic STOL, VSTOL and thrust-reversing capabilities without any
moving parts. CCW alone (Figure 3) employs a similar tangential-blowing configuration but
without the pneumatic thrust deflection. CCW airfoils have generated measured 2-D lift
augmentations of 80 times the input blowing momentum (Refs. 4 and 5). When flight-tested
on an A-6 flight demonstrator, CCW showed a 140% increase in useable high-lift, employing
only half of the bleed air available from the aircraft’'s standard turbojet engines (Ref. 8).
Figure 2 shows how these blown flow-entrainment devices would be arranged to enhance
the effectiveness of the Pneumatic Channel Wing (PCW) configuration. In addition, the CCW
lift capability can be applied differentially outboard to generate very large rolling and yawing
moments, which are essential for controlled flight at the very low speeds of Super-STOL.

Based on earlier CCW/USB wind-tunnel and full-scale data (Figure 4 and Refs. 6 and 7)
and CCW flight test data from the A-6 STOL-demonstrator program (Ref. 8), the predicted lift
and drag capabilities for the Pneumatic Channel Wing configuration were expected to offer
great Super-STOL promise. Reference 9 details these early predictions before the current
wind-tunnel test data were available; these implied C_ values approaching 9-10 for a
Pneumatic Channel Wing aircraft with blowing on outboard CCW wing panels at relatively
low aircraft angle of attack. Higher C_ values were possible at higher thrust coefficients if
higher o values were used due to the additional vectored thrust component. Again, for
comparison, the Custer Channel Wing aircraft generated in-flight CL of 4.9; a conventional
slotted flap on this wing geometry would generate C| from 2 to 3. Initial takeoff predictions

(Ref. 9) showed that these PCW capabilities could produce very-short hot-day takeoff ground
rolls for typical mission weights, and even zero ground roll under certain conditions.

As part of an ongoing program for NASA Langley Research Center to develop this
Pneumatic Channel Wing concept, GTRI and NASA have teamed in an experimental
development program being conducted at GTRI, which has provided aerodynamic and
propulsive data input for design studies being conducted at both NASA and GTRI. This
current paper will summarize these experimental results and discuss effects deriving from
variations in PCW geometry, propeller thrust and channel blowing.

Experimental Apparatus and Test Techniques

A wind-tunnel development/evaluation program was conducted at GTRI on a generic
twin-engine Super-STOL-type transport configuration, Figure 5, using the 0.075-scale semi-
span model shown in Figure 6. Here, a variable—speed electric motor was installed in the
nacelle, which could be located at various positions in the channel, and which drove
interchangeable 2-bladed, 3-bladed or 4-bladed propellers of various diameters and pitch.
Also variable was the height of the blowing slot located at 95% of the channel chord length,
as well as the blowing momentum coefficient and portions of the slot arc length which were
blown. Behind the slot, the rounded trailing edge curved only 90° (rather than the more
conventional 180° of typical CCW configurations) for an anticipated maximum thrust
deflection of around (90° + a). It was already known (Fig. 4) that thrust deflections up to 165°
yielded by blowing were a possibility. Here, the momentum coefficient is defined as
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C, = (mass flow rate * jet velocity) / (dynamic pressure * wing planform area)
=mVj/(gS).

This semi-span model configuration (Fig. 6) was mounted on an under-floor balance
with air supplies and automated pitch table in the GTRI Model Test Facility 30” x 43” x 90” test
section. Tunnel wall boundary layer near the test section floor was eliminated by use of
tangential floor blowing. In a follow-on version of this configuration, both the leading edge
and the trailing edge of the outboard CCW wing section were also blown for separation
control. The emphasis in the following data is on the performance of the inboard blown
Pneumatic Channel Wing configuration, but performance of the outboard CCW sections to
further augment lift is also shown.

Wind-Tunnel Evaluations and Results

Test techniques employed in the subsonic tunnel evaluation of this pneumatic powered-
lift model are similar to those employed and described in Refs. 10 and 11 for blown airfoil
and semi-span models, except that special additional techniques were employed to account
for the installation of the active propeller in the channel (see below). Some 980 wind-tunnel
runs (including propeller calibrations) have now been conducted during three test programs
at GTRI to develop these blown-configuration geometries and to evaluate their aero-
propulsive, flight-trim and control characteristics. A typical run consisted of a sweep
(incremental variation) of prop thrust or blowing pressure at constant angle of attack and
wind speed. Also, angle of attack sweeps or dynamic pressure (velocity) sweeps were run
at constant thrust and blowing coefficients, CT and Cu. Numerous runs were made with

varying tail configurations to evaluate pitch trim and control. Typical test results are

presented in the following sections to demonstrate how these various parameters affected
overall performance.

Fig. 5 — Conceptual Pneumatic Channel Wing Super-STOL Transport Configuration
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Fig. 6 — Pneumatic Channel Wing/CCW Semi-span Model Installation in GTRI Model Test Facility Research
Tunnel (3-bladed prop with Unblown Outboard CCW ), plus Jet Flow Turning in Channel (black tufts)

Tunnel Test Results, Outboard Wing ON

In Figures 7a and 7b are shown the effects on lift and drag coefficients of blowing the
channel trailing edge without the prop installed (i.e., Ct = 0), but with the engine nacelle in
place, Fig. 6. Notice the ability of the blowing to more than double the C|mnax of the unblown
configuration with virtually no reduction in the stall angle, asta . The CL values shown are
comparable to or greater than those which would normally be generated by more-complex
moving mechanical flaps. Notice also the ability of the blowing at a. = 0° to increase C by a
factor of nearly 10 over the unblown value. At a = 0°, blowing at Cu=0.30 yields 50% more C_
than the C_max of the unblown configuration. In Figure 7b, the drag polars at constant Cu are
typically quadratic in C|_.. Earlier in a than where the stall begins, they follow essentially the
same single curve, using blowing to progress to each successive higher C| region.

Addition of the propeller to the channel brings into play the powered-lift characteristics
of the Pneumatic Channel Wing configuration. Figure 8, for o = 0°, shows the variations in
CL and Cp with thrust coefficient CT for fixed values of blowing coefficient. Here, in order to
recognize the direct thrust component to lift and drag, thrust coefficient is defined as Ct =
T/(9S), where T is the calibrated uninstalled wind-on prop-alone (not-in-the-channel) thrust
at the proper advance ratio, i. e., representative test dynamic pressure, q. The reference area
S is the wing semi-planform area. These thrust values were determined prior to installation
in the channel by testing the prop alone in the tunnel at various RPMs and tunnel speeds.
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Fig. 9 — Effects of Blowing Variation on Lift and Drag at Constant CT and a=10°

Then, calibration curves of T vs RPM were input to the data reduction program at given test
wind speeds. Thus Ct, CL and Cp are directly comparable on a common reference basis to
determine force contributions from installed thrust. This avoids the difficulty which would be
caused by using the standard helicopter thrust coefficient, based on rotor (or prop) geometry
rather than wing area. Also, note that measured Cp thus obviously includes the input thrust,
which cannot reasonably be separated from the aerodynamic drag alone once the prop is in
the channel. Measured Cp can thus be (and sometimes is) negative. After the initial low
values of Ct are exceeded, CL increases nearly linear with Ct, and Cp reduces nearly
linearly. (This implies that at a constant Cu, the thrust deflection angle is nearly constant.)

Figure 9 shows that incremental lift augmentation due to blowing (Cu) is much
greater than due to Ct (Figure 8). Here at Ct = 2.2, the blown configuration generates C_
around 8.5 at a =10°. The flight-tested Custer Channel Wing (Ref. 3) generated roughly 1/3
this CL at this Ct, but also required a = 24°-25°. Note also that increased blowing at a
constant Ct yields increased drag (rather than thrust recovery), which can be quite essential
for Super-STOL approaches and short landings. These lift comparisons in Figures 8 and 9
show that lift increases more efficiently by increasing blowing than by increasing thrust. In
the Figure 10 plot is shown the variation in lift and drag with angle of attack for the blown
powered-lift configuration in comparison to the unblown baseline configuration without the
prop. Here, flow visualization showed that the initial stall (a=15°-17°) seen for most of the lift
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Fig. 10 — Effects of Blowing, CT, and a on Lift Coefficient, Stall Angle and Drag Coefficient
for Pneumatic Channel Wing Model with Unblown Outboard Wing

curves corresponded to stall of the outboard unblown wing section, while the blown channel
wing section then continued on to stall angles of 40°-45° and C, values of 8.5 to 9. Notice
that Cp (including thrust) increases from negative to positive values as incidence increases.

Figure 11 shows the effect on lift and drag of increasing the circular arc length of the
blown slot around the channel at a given prop longitudinal location (x/c = 0.95), where the
maximum slot arc of 160° was most effective. Blowing of more than 160° of channel arc was
not appropriate on this model because the last 20° of inboard arc was along the channel
right next to the fuselage, and blowing there would do litle more than bounce off the
fuselage.

The effect on increased tail-off pitching moment caused by suction loading on the aft
of the channel (either by blowing, prop slipstream, or both) is shown in Figure 12 as a
function of CT and Cy, all at aa.=0°. These moments are referred to the channel’s quarter-
chord location (c/4), and confirm the typical trend of this type of blown configuration: large
nose-down CM which, while it does make the aircraft much more stable longitudinally,
causes concern with pitch trim. It is for this reason that additional experimental evaluations
were conducted tail-on to investigate increased longitudinal trim capabilities. All data
presented so far have been tail-off. Also a second investigation was conducted with leading-
edge blowing installed on the outboard wing CCW portion to provide counteracting nose-up
pitch for trim, as well as for leading-edge separation prevention.
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Tunnel Test Results, Channel Wing Only

Higher non-dimensional thrust coefficient values were available when the channel-only
configuration was tested (fuselage, blown channel and prop, but with no outboard CCW
panels) since the reference planform area of the wing was also reduced. This allowed C; of
~3 for the channel-only vehicle, and as Figure 13 shows, lift coefficients nearing 11 were
measured with a conventional horizontal tail installed at the mid-vertical location on the aft
fuselage. Needless to say, not all of the lift values shown in Figure 13 (right plot) are
trimmed longitudinally. Furthermore, for the C; =3 case with blowing on, the conventional tail
of the aircraft stalled experimentally over much of the lower a range (more on this below).

The possible inability to longitudinally trim these Super STOL aircraft was pointed out
as a problem of blown systems in Refs. 7 and 8. It is further emphasized in Figure 13,
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Figure 13 —Effect of Thrust and/or Blowing Increase on Lift & Pitching Moment Variation with o for
Channel-Wing-Only Configuration (No Outboard Wing Panels) with Tail at Mid-location, i+=0°

where the large suction on the aft-loaded blown channel (and blown wing, if present)
produces very large nose-down pitching moments (see the tail-off curve). Even though this
can produce improved longitudinal stability, these moments must also be trimmed.
Horizontal tail investigations were conducted as part of this 3-D model development plan in
hopes of determining tail location and configuration to provide enough nose-up pitch to trim
the vehicle. Several horizontal tail configurations (one without an elevator, a second with a
20°-up elevator [d¢ey = +20°], and a third with an inverted leading edge droop) were designed
and fabricated.. As Figure 14 shows, these could be mounted on a vertical center plate
yielding variation in both tail incidence (it) and vertical position in the propeller slipstream.
High, mid-fuselage, and low-tail positions were tested. Testing of these tail-on
configurations over a range of tail parameters revealed that a low-tail position immersed in
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the prop slipstream and dynamic pressure was more effective than the higher tail (Figure
15), but the lower tail also experienced more leading-edge stall for the same reason. This
tail stall prevents the vehicle from being trimmed at this higher blowing condition (here with
the outboard CCW wing on again). Considerable videotaping of flow visualization tufts on
the tail revealed these problem areas and led to the development of the inverted-droop
(drooped upward) leading-edge modification for the tail. Keeping the tail LE attached allows
positive nose-up pitch and thus trim to be generated for the vehicle over a much wider range
of lower a values. For the Channel-Wing-Only model with the modified tail, trimmed C_
values greater than 9 are thus seen (Figure 16), but much of this data is still untrimmed, and
again the low tail with no LE mods is fully stalled. Thus, this data implies that further tail
development (perhaps including LE blowing to prevent the tail stall without mechanical LE
fixes) is needed to trim in this high C, range at all vehicle angles of attack.

Figure 14 — Horizontal Tail Configurations Evaluated: High Tail; Low Tail; Mid-fuselage Tail,
Outboard CCW ON
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Tunnel Test Results: Flow Attachment

An additional series of flow visualizations was conducted to further identify means to
prevent separated flow fields on the wing during high-lift generation. Figure 17 data show
that the flow at the channel leading edge is entrained to the point where LE separation is
prevented up until a=35-40° or more, but that the outboard CCW is prone to stall there.
Leading-edge blowing on this outboard CCW wing panel greatly entrained this flowfield as
well. Figure 18 flow visualization shows this severe separation at a = 20°for the unblown
case (left photo), while blowing the leading edge completely re-attached the flowfield there.

An additional means of trim and control was investigated for the Pneumatic Channel
Wing. This means merely offsets these large nose-down pitching moments (seen in
Figures 13, 15, and 16) by moving the aircraft center of gravity aft to trim, with no tail installed.
Aft cg movement was previously performed for flight tests of the A-6/CC Wing aircraft, but with
the tail on, Ref. 8. Figure 19 shows data for the C+=3 case of a tailless Pneumatic Channel
Wing without outboard wing. At Cu = 0, moving the cg aft from x/c =0.25 to 0.375 gives the
aircraft neutral longitudinal stability but does produce trim over most of the angle of attack
range. Similar reduction in pitching moment can be produced by aft cg shift as blowing is
increased (Figure 19b), but this requires further aft cg to trim at lower o, and the C_ vs Cy,
curves are now unstable ( dCy / dC_=+ ). Some small control surface (such as a blown
canard to provide nose-up pitch and positive lift to trim) could perhaps be incorporated with a
state-of-the-art control system and control laws to make this a feasible pitch-trim device
without lift loss due to tail download.
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Figure 17 — Leading-edge Blowing and Channel Flow Entrainment Prevent Flow Separation over Both
Channel and Outboard CCW Leading Edges
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(a) Outboard LE slot unblown (b)Outboard LE Slot blown
Figure 18 — Flow Attachment Caused by Leading-edge Blowing on Outboard CCW and Channel Flow
Entrainment at =20°, Channel LE not Blown
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Fig. 19 (a) C+=3, Cu=0
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Figure 19 — Effect of Aft CG Location on Pitching Moment Curves for the
Tail-less Pneumatic Channel Wing at Ct=3, Xmom=X,4/c

Comparison of Measurements and Predictions

In Figure 20 are compared the results of these investigations with previously-
predicted lift and drag data which were estimated from existing CCW/USB wind-tunnel data
and from A-6/CCW flight-test data. Whereas the prop/electric motor currently available did
not allow higher CT values than about 2.2 (outboard wing ON), this lower-thrust wind-tunnel
data considerably surpasses the predicted lift data (Fig. 20a). If the ratio of measured-to-
predicted holds linearly up to C1=10, then C, values over 14 are to be expected at a =10°.
The experimental drag data (Fig. 20b) is similar to the predicted values at lower Cu but
shows less drag than predicted at higher blowing. These estimated data had been used to
predict Super-STOL takeoff distances on a hot day at 3000 ft altitude to be less than 100 feet
and in some instances, zero feet (see Reference 9 and Fig. 21 below). The measured-
versus-predicted results in Figure 20 seem to suggest than even better takeoff performance
might be obtained (higher lift, lower drag). However, the lower measured drag values
indicate that additional attention will need to be paid to obtaining greater drag values for
steeper glide slopes on STOL approaches (when desired and chosen by the pilot).
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Potential Applications

Design and mission studies conducted at NASA LaRC based on the above tunnel
data have lead to consideration of several new pneumatic powered-lift PCW-type
configurations. The capability of the Pneumatic Channel Wing to significantly augment lift,
drag, and stall angle to the levels reported herein demonstrates that this technology has the
potential to enable simple/reliable/effective STOL and possibly VTOL operations of personal
and business-sized aircraft operating from remote or small sites as well as increasingly
dense urban environments. Such capability now opens the way for alternate visions
regarding civilian travel scenarios, as well as both civilian and military aerial missions. One
such vision is represented by the Personal Air Vehicle Exploration (PAVE) activity at NASA
Langley Research Center. Another vision, a military Super-STOL transport, is discussed in
the mission study of Reference 9 and Figure 21 above.

Summary and Conclusions

Results from subsonic wind-tunnel investigations conducted at GTRI on a 0.075-
scale powered semi-span model of a conceptual Pneumatic Channel Wing (PCW) transport
have confirmed the potential aerodynamic payoffs of this possible Super-STOL
configuration, including very high lift and overload capability. These results include:

» Lift and drag augmentations and/or reductions as desired for Super-STOL operation
have been confirmed, with C,=9 measured at a=10° (C,=10-11 at higher «), and drag

coefficient (including thrust) varying between —2 and +2, depending on blowing and thrust
levels. C.’s nearing 14 are predicted if higher Cis available, say on takeoff

« Blowing (Cu) and thrust (C;) variations were both found to significantly enhance

circulation, thrust deflection and lift; but, if evaluated as incremental lift per unit of input
thrust or momentum (C; or Cu), blowing was far more efficient than thrust.

+ By varying only Cu and/or C., all the aircraft's aerodynamic characteristics (forces and
moments) can be augmented or reduced as desired by the Super-STOL aircraft’s pilot or
it's control system without mechanical moving parts (such as tilting rotors or wings) and
without resorting to high a to acquire larger vertical thrust components for lift.

+ The blown channel wing itself, without thrust applied, was able to double the C|max
capability of the baseline aircraft configuration, and multiply its lift at «=0° by a factor of 10.

Addition of blowing on the outboard CCW section can increase this further, and can also
add drag as needed for Super-STOL approaches.

» Even with the unblown outboard wing stalling at a=15°-17°, the blown and thrusting
channel continued to increase lift up to a stall angle of 40°-45° due to channel flow
entrainment. While this high a may not prove practical as a takeoff/landing operational
incidence, it does show significant improvement over the asymmetric LE separation of
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the conventional channel wing’s stalled channel and the resulting low-speed control
problems.

+ PCW conversion of thrust into either drag decrease or drag increase without moving
parts is also quite promising for STOL operation.

» Large nose-down pitching moments are produced by these blown configurations, and
thus longitudinal trim capability needs to be addressed in future evaluations.

 Unlike a tilt rotor, in Super-STOL or VSTOL, there is no download on the wing from prop
thrust since the PCW props don't tilt

« PCW’s potential for an integrated lift, thrust/drag interchange and control system all
from one set of devices holds promise in terms of simplity, weight reduction and
reliability/maintainability

Thus far, the projected operational benefits based on these early data suggest Super-
STOL and possible VSTOL capability with significantly increased payload, reduced noise
signatures, and increased engine-out control, all without variable geometry or mechanical
engine/prop tilting. A Pneumatic Channel Wing aircraft thus equipped could provide a
simpler, less costly way of achieving the Super-STOL/VSTOL capability without the
complexity, weight or reliability issues of rotating the propulsion system, carrying large
engines and rotors on the wing tips, or thrusting downwards on fixed wings during hover.
Additionally, the integration of pulsed-blowing technology with Circulation Control (currently
being investigated by GTRI and NASA, Ref. 12) may further increase lift efficiency and reduce
already low blowing requirements by up to 50% or more, while further enhancing stability
and control. Successful application of these results can lead to positive technology transfer
to personal, business, and military sized aircraft. In addition to the military Super-STOL
transport discussed above, NASA LaRC has included these experimental data and
pneumatic technology results in preliminary design studies of other possible pneumatic
powered-lift configurations, including smaller personal and business-type aircraft

Recommendations

Future testing, evaluation and development still need to be accomplished to address
possible pitch-trim problems, performance at higher CT and lower Cu, and associated
stability and control. In the future, the existing model or larger 3-D models should be
modified to include blown tail surfaces and additional improvements to the pneumatic thrust
deflection system. The following should be experimentally investigated:

» Use of pulsed blowing to further reduce required blowing mass flows (both inboard on
the channel and outboard on the CCW).

» Higher propulsor solidity for greater thrust and powered lift, or improved propeller
characteristics for greater Ct availability.
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* Further evaluation of low-speed controllability and trim, including evaluation of improved
tail surfaces, which might even be blown to reduce tail area and drag.

* Further evaluation of low-speed controllability and trim by novel aerodynamic/ pneumatic
trim and control devices (blown canards, for example.)

The earlier mission analyses should be revised to incorporate the experimentally
developed aeropropulsive and stability & control characteristics of the Pneumatic Channel
Wing concept. If the projected benefits are confirmed, and further benefits come to light, then
larger-scale, higher-Reynolds-number testing on a full-3-D Pneumatic Channel Wing model
with variable yaw capability should be conducted to facilitate greater strides toward this
pneumatic powered-lift technology’s maturation .
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Disadvantages of Conventional Channel Wing Configuration |

Much of High C; is from Redirected Thrust, little augmentation
High Drag from Channel Surface Area

Asymmetric Thrust vields Asymmetric Moments & Instability
Channel Leading-edge and Trailing-edge Separation at High @

Poor low-speed control from conventional aerodynamic surfaces
Nose-down Pitch from Aft Propeller

Non-Uniform Flow around Prop at High &

Poor Lift/Drag ratio

High angle of attack operation:poor visibility,control e

One-engine-out control problems

ALL ARE SOLVABLE BY PNEUMATIC SYSTEMS APPLICATION.
and ADDITIONAL SYNERGIES WILL RESULT
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Basis of Circulation Control
Pneumatic Aerodynamics
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Basis for Outboard CCW and Inboard Pneumatic Channel Wing

Demonstrated Static Thrust-Turning Capability of
CCW/Upper Surface Blowing Wind Tunnel Model

concapt ot figt.

CCW/USB =Pneumatic STOL ,
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ST Capability with NO Moving Parts

tunnel model,

Basis for Pneumatic Channel Wing Concept Developed in this NAS A Program :
Augment Channel-Flow Lift and Produce Greater Thrust Turning
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Basis of Channel Wing Propulsive Aerodynamics
and Current Pneumatic Developments
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aircraft, with ample

control

3D Channel Wing Configuration

Operations:
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increasingly
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Military, PAV and
Commercial
Applications
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Pneumatic Channel Wing/CCW Model Design
and Associated Experimental Propulsion Unit
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Half-span 0.075-scale Powered Pneumatic Channel Wing
Model with 3 Air Supply Sources: Channel TE,
Wing LE & TE

0.075-Scale Channel Wing Model Installed in
GTRI Model Test Facility, and Jet Flow Turning

Semi-Span Pneumatic Model with Assembled Pneumatic Channel with
Prop Installed at Aft Location Blowing and Flow Turning
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GTRI Test Results: Blown Channel Wing Lift and Drag
Variation with Incidence without the Propeller Installed
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Effects of Blowing and C; on Lift Coefficient,
Stall Angle, and Drag Coefficient
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Outboard CCW Trailing-Edge Blowing;
Comparison of 0° and 90° CCW Flaps
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Flow Visualization showing Leading-Edge Separation
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Flow Visualization showing .eading-Edge Attachment
at Higher Lift and o (C=2.2, Cpt ... 7~1.0, LE Blowing ON)
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Pneumatic Channel Wing Configurations Tested,
with and without Outboard CCW

Aerospace, Transportation
and Advanced Systems

CCW Outboard, No Tails e

Blown Channel Wing Alone & Outboard Unblown
CCW, Both with H-Tail, Plus Outboard LE and TE
CCW, New Tails, New Props

Evaluations of Horizontal Tail Positions for Longitudinal Trim

High Tail {out of downwash, minimum drag)

Mid Tail (fusclage installation)

Low Tail (in Prop downwash, max. trim tail
power, but tail LE Stall a problem)
g R

Note: Pneumatic Canard an Excellent
Alternative to Aft Tail, but not yet tested
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Pneumatic Channel Wing and Generic STOL Tilt Rotor Used in
Mission Analyses with STOL Takeoff and Landing Evaluations

Preutnatic Channel Wing
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mode, 51.5% Rotor Tilt Angle

Predicted Pneumatic Channel Wing SuperSTOL Takeoft Performance
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SUMMARY & CONCLUSIONS

Blown/Powered Tunnel & Flight Investigations have confirmed CCW and/or the
Pneumatic Channel Wing concepts for High Lift, Super STOL & Overload capabilities

Lift, Drag, all 3 Moments are all variable (+ or -) by both C; and C , and without moving
elements~ More or Less C;, Cp, and Gy are available as required by Pilot or control system

For Lift Augmentation and SuperSTOL, C, more effective than Cr; High & Not Needed
No Moving Parts are necessary for Blowing Benefits: Weight reduction

Cr can be converted to Thrust Recovery, Cp increase, or even Thrust Reversal

Trim and Low-speed Control ALWAYS Need to be addressed for SuperSTOL aireraft

Wind-Tunnel and Flight-Test Data lead to significant Super STOL or VSTOL benefits,
advantages and applications for Pneumatic Military, Commercial or Private Aireraft

e, Tt ’ e

Projected Operational Benefits & Advantages of Pneumatic Channel Wing

Pneumatic/Propulsive High Lift Generated with Thrust Deflection and No Moving Parts:
C. =10 - 11 or greater at c=10°; avoids high & operation, flow separation, loss of control

Additional Lift from Outboard CCW surfaces: Yields high Overload Capability- No tilting
rotors or tilting engines necessary!

Non-moving Augmented Blown Control Surfaces yield Low-Speed Control: Pitch,
Roll&Yaw; Increased One-engine-out Control; High Response Rates from variable blowing

Integrated Lift, Propulsion, and Control Systems vield Simplicity, Low Weight & Increased
Performance; Systems Synergy vields inter-related multi-function components

Pneumatic Channel Wing Provides Significant Powered Lift Without Rotor Tilt: Inereased
Liftable Weight and Payload are possible with very short field length

Super STOL and VSTOL Potential, with Possibility for Hover without Engine Tilt

Channel Wing ean “Hide” Propulsion System from Acoustic & Infrared Detection

No Download Impacting on Fixed Wing in Low speed or Hover; High DL~ Higher Cruise V
Signature Reduction; Payload Fraction Increase, Cost Reduction relative to Tilt Rotor

These Benefits should be Quantified and Confirmed in Future research
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Recommendations for Advanced Pneumatic Aircraft

+ Continue Analytical & Experimental Development of 2-Engine Pneumatic Channel Wing
Aircraft as SuperSTOL or V/STOL transport
+ Analytically & Experimentally Develop a 4-Engine Pneumatic Aircraft as an Advanced
Transport with SuperSTOL or V/STOL and Overload capabilities
(turboprop or jet driven)
* Develop CCW on a Pneumatic Fighter/ Attack Aircraft with SuperSTOL and Overload
Potential plus High Mancuverability

* Develop a CCW-only STOL Transport with Gross-Weight-
Overload capability on unprepared runways (Runway Independent Aircraft)

+ Apply to Personal Air Vehicles and/or ESTOL vehicles for Small- or No-Runway Operation

Georgia Tech Research Institute and NASA Langley Research Center can help!!
~36+ years pneumnatic technology development & expertise; unique test facilities;

flight-test experience; related analytical capabilities and programs; and the
Enthusiasm to develop and employ this technology on future advanced aireraft
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Backup Slides

Custer Channel Wing, CCW-5, Flown in
Powered-Lift Flight in Early 1960°s
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Channel Wing Model with Variable Nacelle Locations, to
Determine Effect of Prop Position on Flow Entrainment

Channel Wing Configuration with

Channel Wing Configuration with
Aft Prop/Nacelle Location, x/¢=0.95 Forward Prop/Nacelle Location, x/¢=0.60

GTRI Test Results: Effects of Prop/Nacelle Location
on Lift & Stall Angle: Less-aft Prop is Better
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Connection to Other Programs

Pneumatic channel wing provides enabling
technology for conceptual Personal Air Vehicles

Comparison of Predicted & Experimental Pneumatic Channel Wing
Lift and Drag due to Blowing and Thrust Deflection, o = 10°, No Outbd CCW
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Pneumatic Channel Wing Predicted Ground Roll Distances,
91.5°F, h=3000", «¢=10°, S=381 4 fi*
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